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NOMENCLATURE 

film heat transfer coefficient; 

LI&.,1..EC~ 
thermal conductivity ; 
consistency coefficient in power-law expression ; 
exponent in power-law expression ; 
Nusselt number, hD/k; 
equivalent overall Nusselt number, UD/k ; 
equivalent external Nusselt number, D/Rk; 
Prandtl number, cK/k(r/u,,,)‘-“; 
radius ; 
external thermal resistance (based on inside tube 
area) ; 
Reynolds number, r”ui-“p/K ; 
axial velocity ; 
overall heat transfer coefficient; 
axial distance ; 
dimensionless distance, x/rRe’Pr. 

Greek symbols 

P7 density ; 
T, shear stress. 

Subscripts 
m, mean ; 
X, local ; 
co, ambient or asymptotic. 

MANY analyses have been made of entrance-region heat 
transfer with fluids flowing in circular tubes for cases of 
constant wall temperature and constant heat flux. A more 
realistic condition in many applications, however, will 
include a resistance such as a layer of insulation or an 
external fluid film between the fluid in the tube and the 
external heat transfer medium. The only previously published 
study related to this problem (Schenk and Dumore [l]), was 
based on the condition of fully developed laminar flow of 
constant-property Newtonian fluids 

The present work considers the problem of heat transfer 
to a fluid entering a circular tube in laminar flow with 
uniform velocity and temperature, with a constant external 

resistance between the tube wall and the constant ambient 
temperature. This work, which is an extension of the 
previous study of McKillop et al. [Z], includes the effects of 
temperature-dependent viscosity and non-Newtonian be- 
havior that can be described by the power-law model, 
r = K(du/dr)“. 

The overall thermal resistance at any downstream point 
in the tube is equal to the sum of the fluid and external 
resistances, or 

l/U, = l/h, + R 

where U, is the local overall heat transfer coefficient ; h, the 
fluid coefficient; and R the constant resistance of the tube 
wall, insulation, and external fluid film, based on the inside 
tube area. It is convenient to multiply the above expression 
through by the ratio k/D so as to convert all terms to 
equivalent Nusselt numbers. 

l/Nu; = l/Nu, + l/Nu”. (1) 

In equation (l), Nu, is the usual fluid Nusselt number, 
Nu; an overall Nusselt number, and Nu” a constant Nusselt 
number representing the external resistance. In the previous 
study [2], constant-property results were expressed in 
terms of the Prandtl number and the power-law exponent 
n as parameters; to these must now be added the constant 
Nu”. At the tube entrance, Nu, is infinite and Nu: is therefore 
equal to Nu”. At the opposite extreme of fully developed 
flow, Nu, and NI& become independent of Pr and approach 
constant values that are dependent only on n and Nu”. 

For design purposes, we desire a mean Nusselt number to 
calculate the total heat transferred for any specified tube 
length. A mean overall Nusselt number can be defined by 
the equation 

Nu:, = (l/L); Nu;dx 
0 

(2) 

where the value of Nu: is obtained from equation (1). With 
this definition the total heat transferred from the entrance 
up to a length of tube Lis given by 

g = nkLNu:At,, (3) 
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where At,,,, is the logarithmic mean of the overall temperature 
differences at the entrance and at distance L 

Solutions were obtained with the finite difference method 
of the previous study except that a boundary condition 
specifying the wall temperature gradient in terms of Nu” 
replaced the constant wall-temperature boundary condition. 
The errors of that solution in the immediate vicinity of the 
entrance are of minor importance* in this application 
because heat transfer rates in this region are determined 
primarily by the external resistance Results presented below 
for Nu” of jn~nity, corresponding to zero external resistance, 
were taken from the previous study, which used an integral 
boundary-layer solution in the immediate entrance region. 

RESULTS AND DISCUSSION 
Constant property 

Figure 1 shows typical curves of Nu, vs. xc for n of 1.0, 
Pr of 07 and various values of Nu”. The lower line in this 
figure, for Nu” = co, simply corresponds to the case of zero 
external resistance and constant wall temperature. At the 
opposite limit of Nu” = 0, the total resistance is infinite and 
the heat flux is therefore constant at zero. The condition of 
zero heat flux is simply the limiting case of constant heat flux 
operation, and curves for all intermediate values of Nu” 
must therefore lie between the two limiting solutions of 
constant temperature and constant heat flux. In the 
immediate region of the entrance, Nu, becomes very large 
and, the condition again exists that the total resistance is 
equal to the external resistance. Over a sufficiently short 
length of tube downstream from the entrance, the fluid 
temperature does not change appreciably, and the resulting 
condition of constant resistance and constant At corresponds 
to the constant heat flux case. The curves for all values of 

a/Vu”= 0 

b Nu”= I 
cNu”= 4 

d Nu”= 40 

e NC/“= 200 

f/w= co 

Nu” must therefore approach the constant heat flux line as s 
approaches zero. The asymptotic values that Nu, approaches 
at large x are dependent on Nu” and are listed in Table 1. 

Table 1. Asymptotic values of Nu, 
_ 

n 1.0 0.7 0.5 
__- 
hw 

0 4.36 4.56 4.78 
4 4.0 4.17 4.36 

40 3.71 3.86 4.02 
200 366 3.81 3.97 
Infinite 3.66 3.80 3.95 
_-- 

The curves for various Nu, can be correlated by the 
equation 

ln(NuX/Nu,j = 1 aj[ln(l/xo)y. 
J 

(4) 

The coefficients aj were determined by a least squares 
method and are listed for n of 1.0,07 and 05 in a separate 
tabulation.* Equation (4) yields values of Nu, with a 
m~imum deviation of 2 per cent for x0 > 5 x 10-4. Mean 
overall Nusselt numbers were calculated by applying 
equations (1) and (2) to values ofNu, obtained from equation 
(4). These results are presented as a ratio of NutiN&, also 

- 

* Tabular material is deposited as document NAPS- 
01115 with the ASIS National Auxiliary Publications 
Service, c/o CCM Information Sciences, Inc., 22 West 34th 
Street. New York. N.Y.. 10001, and may be obtained for 
$2.00 for microfiche and 65.00 for photocopy. 
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FIG. 1. Effect of external resistance on local fluid Nusselt number for 
Pr=0.7andn=l.O. 
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tabulated separately. Over a large portion of entrance region 
flow, this ratio is substantially independent of n The effect 
of n becomes more important at smaller x0 and Pr and at 
larger Nu”. For each n and Nu”, curves for all Pr lie above 
the curve for fully developed entering velocity and approach 
it as xn increases. As Pr increases, velocity development 
requires a smaller portion of the total entrance region, and 
the Nusselt number curves are lower and approach the 
fully developed flow line at smaller values of x,,. Fully 
developed flow corresponds to the case of infinite Pr, where 
velocity development is completed before thermal develop- 
ment starts. 
Variable oiscosity 

The previous study showed that with no external resistance, 
the effect of variable viscosity could be expressed in terms 
of a parameter H, which is the ratio of the consistency 
coefficient K (or viscosity for Newtonian fluids) at the wall 
temperature to that at the entering temperature. H is thus 
greater than 1.0 for cooling and less than 1.0 for heating. 
For a given value of H (or l/H), the decrease in Nu in 
cooling is about the same as the increase in heating. Heating 
and cooling lines for constant wall temperature parallel the 
constant property line at small values of x,,, and all lines 
have merged into the common asymptote for fully developed 
flow at x0 of 1.0. 

Similar qualitative effects are to be expected here. Figure 2 
shows plots of Nu: for heating and cooling, for n of 1.0, 
Nu” of 40, and Pr of 10 and 1000. In this figure, Pr is based 
on the ambient temperature, not the entering temperature. 
Since all lines therefore correspond to the same uniform 
temperature at the end of the entrance region, the asymptotic 
Nub, will not be affected by the value of H. As mentioned 
above for the previous study, the end of the entrance region 

where all lines have merged into the common asymptote 
corresponds to x0 of about 1.0 regardless of the value of 
Pr or H. Furthermore, for a given velocity and Pr, any 
particular value of x,, corresponds to the same physical tube 
length for all values of H. 

In contrast to the constant wall temperature behavior of 
the previous study, the heating and cooling lines of Fig. 2 
intersect. This behavior is a result of the fact that, with an 
appreciable external resistance, the wall temperature in the 
vicinity of the entrance is closer to the entering temperature 
than to the ambient temperature. Since the Nusselt number 
is established primarily by conditions near the wall, the 
effective Pr in the immediate entrance therefore corresponds 
more closely to the entering temperature than to the 
ambient temperature. Where there is no external resistance, 
the effective Pr corresponds more closely to the ambient 
(or wall) temperature. In cooling, for example, the fluid 
enters at a higher temperature and is cooled toward the 
ambient temperature. According to the above reasoning, the 
effective Pr is lower than the ambient Pr values used as a 
basis for Fig. 2. As pointed out in the discussion of constant 
property results, a lower value of Pr leads to a higher Nu 
in the entrance region. Therefore, the Nusselt number at any 
downstream distance (or x0) will be higher than if Pr were 
constant throughout. At some suffkiently small x,,, this 
increase in Nu caused by the lower Pr is more than suffkient 
to offset the opposing effect of the reduced wall velocity 
gradient resulting from cooling of a fluid with a temperature- 
dependent viscosity. Analogous reasoning applies to the 
heating situation. As the wall temperature approaches the 
ambient temperature farther downstream, the expected 
velocity gradient effects become predominant, and the 
cooling curve falls below the heating curve. 

FIG. 2. Effect of variable viscosity on local overall Nusselt number for 
Nu” = 40 and n = 1.0. 
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The presence of external resistance has a dual effect. By consideration, uncertainties as to the rheological properties 
acting as a constant additive term in equation (I), it moderates of a fluid and as to the correspondence of an actual system 
the influence of changes in Nu, on Nu’. Furthermore, it with the model used here could be of more importance than 
reduces temperature gradients in the fluid and thereby uncertainties in the adjustment for variable viscosity. 
reduces the effects of heating and cooling. The values of H 
shown in Fig. 2 represent substantial degrees of heating 
and cooling and yet the maximum spread between a pair of 
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In the opposite direction of increasing Nu”, the limit is set 
by the constant wall temperature case. The previous study 
indicated that deviations from constant property flow 
caused by the variable viscosity effects depend only to a 

1. 

minor extent on the value of n. The brief results presented 
here, therefore, when taken together with the previous study, 2. 
provide an approximate basis for making adjustments to 
handle design problems with variable viscosity flow in the 
presence of an external resistance. From a practical 
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